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ABSTRACT: The crystallization of polymer films in a tem-
perature gradient was simulated. The curvature of lamella
growth directions observed experimentally was taken into
account. The computer simulation permitted the visualiza-
tion of the evolution of the spherulitic pattern and also the
calculation of the conversion of the melt into spherulites.
The mathematical model was also elaborated and allowed
the prediction of the kinetics of conversion during the crys-
tallization of polymers in the temperature gradient. A good

agreement between the computer simulation results, the
mathematical model predictions, and the experimental data
for isotactic polypropylene crystallized in a temperature
gradient was obtained. © 2002 Wiley Periodicals, Inc. J Appl
Polym Sci 86: 1351–1362, 2002
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INTRODUCTION

The low thermal conductivity of polymers results in a
slow heat subtraction from thick-wall products cooled
and solidified during industrial processes. The libera-
tion of the heat of crystallization is an additional factor
causing slower cooling or even an increase in temper-
ature inside such objects.1 Therefore, the solidification
of polymers occurs in temperature gradients.

The temperature dependencies of both the spheru-
lite nucleation and growth rate result in significant
differences in the crystallization kinetics and in the
final spherulite structure between regions solidifying
at different temperatures. It is also known that the
temperature gradient leads to anisotropic spherulite
growth and shapes and affects the directions of
spherulite growth. The growth trajectories bend in the
temperature gradient, being normal to the growth
front.2–4 The changes in interspherulitic boundary
shapes have also been reported.2,4 Recently, Pawlak
and Piorkowska4 showed that the temperature gradi-
ent could accelerate the conversion of the melt into
spherulites.

Besides experiments, the modeling of crystallization
also provides insight into the development and final
form of the spherulitic structure. The modeling of
spherulitic crystallization concerned mainly the pro-
cesses occurring in a uniform temperature field. The
conversion of the melt into crystalline domains grow-
ing from random nuclei was first described by Evans,5

who calculated the probability that an arbitrarily cho-
sen point remained unoccluded by spheres or circles
expanding radially from nuclei distributed randomly
in the sample. Avrami6 introduced the concept of
extended volume, the total volume of all domains
growing from all nuclei, including phantom events in
the already crystallized area and neglecting the trun-
cation. Both approaches are equivalent and based on
the assumption that only the first domains passing
through sampling points are real and still growing
because domains that have originated from phantoms
and domains truncated by neighbors are delayed.
Therefore, the conversion degree at a certain time t is
expressed by the classic equation, �(t) � 1 � exp[�E(t)],
with E denoting the extended volume or expectancy.
An earlier treatment of the problem by Kolmogoroff7

is based on an inaccurate approach: the errors made in
his derivation accidentally cancel one another, leading
to the correct result.8

The results of the computer simulation of spheru-
litic growth from nuclei9 agree with the Avrami the-
ory; however, many authors have pointed out the
reasons for discrepancies between the experimental
results and the theoretically predicted value of the
Avrami exponent.10

Later development of the theory permitted the ex-
pectancy, E(t), to be obtained for a time-dependent
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nucleation rate11 and for the problem of the tempera-
ture-dependent nucleation and growth rate but with
the additional assumption that the temperature
changes linearly with time.12 The effects of finite
sample sizes and surface nucleation were also eval-
uated.11,13–15

In the general Avrami approach,6 the extended vol-
ume around a certain point of a sample, A, equals the
average number of extended domains that have
grown through point A. Therefore, it is the integral of
the time- and position-dependent nucleation rate, F,
over the so-called region of influence of A:

E�t, A� � �
0

� �
0

2� �
0

R ��
0

t�

F��, r, �, �� d��
� r2sin � dr d� d� (1)

where � is the time; r, �, and � are spherical coordi-
nates about A as the origin; and t� denotes the nucle-
ation time for the domain nucleated at position r,�,�
and passing through point A exactly at time t. Time t�
is determined by the differential equation, d	
� �Gs(�,r,�,�)d�, fulfilling the conditions � � t at 	 � 0
and � � t� at 	 � r, where Gs denotes the time- and
position-dependent growth rate of domains. R(�,�,t) is
the radius at t of the domain that was nucleated at t�
� 0 at �,� and reached point A at time t: R � r for t�
� 0. In principle, eq. (2) permits us to describe the
kinetics of crystallization in complicated conditions,
although no application of that formula was demon-
strated in ref. 6.

The approach developed by Piorkowska and
Galeski16,17 and Piorkowska18,19 was based on the con-
cept of nucleation attempts as random events in space
and time. It allows not only for the evaluation of the
conversion degree of the melt into domains but also
for the description of the structure formation process
and the final microdomain pattern for both isothermal
and nonisothermal conditions in infinite and finite
samples. The possibility of including the dependence
of the nucleation rate and spherulite growth rate on
time and position was pointed out in ref. 16, leading,
however, to eq. (1).

The computer simulation of spherulitic structure
formation allows us to follow the evolution of the
spherulite pattern, including the determination of the
overall crystallization kinetics. Although the radial
growth of spherulites was a basic assumption in all
existing mathematical models of overall crystalliza-
tion kinetics, the changes in lamella growth directions
were first taken into account in computer modeling by
Lovinger and Gryte.20 The calculations, however,
were limited to the prediction of the quasi-parabolic
shape of a single spherulite occluded by a unidirec-

tionally growing crystallizing front in poly(ethylene
oxide).

Shulze and Naujack3,21 derived an analytical equa-
tion describing the anisotropic shape of the spherulite
and the variable growth directions in a uniaxial field
of the growth rate by introducing the condition of the
minimum time along the growth lines. The growth
lines were always normal to the growth front. The
obtained results were verified by comparison with the
data for the crystallization of isotactic polypropylene
(iPP) in the temperature gradient of 8–11 K mm�1.

Recently, the multiscale model for polymer crystal-
lization was described by Charbon and Swami-
narayan.22,23 The arborescent technique allowed them
to follow the growth of individual fibrils within a
spherulite. The necessity of performing a large num-
ber of computations limited the applicability of this
method, and so the second technique, front tracking,
based on the tracking of the crystallization front evo-
lution, was elaborated. The front tracking method,
based on the growth normal to the growth front, was
combined with the solution of the heat conduction
equation and was applied for the prediction of poly-
ethylene spherulitic structure development in a plate
cooled by contact with a mold at constant tempera-
ture. The spherulite nucleation and growth were con-
sidered in two dimensions. Despite other simplifica-
tions of the problem, such as the regimes of the growth
rate being neglected, the results gave an idea of the
possible structure transformation induced by the tem-
perature gradient, including the change in the growth
direction of lamellae.

Although the two-dimensional model is not repre-
sentative of the crystallization in bulk, the application
of the described methods of modeling to bulk crystal-
lization seems rather difficult because of the necessity
of following the trajectories of growth-front points in
three dimensions. However, the temperature gradient
can accelerate the conversion of the melt into spheru-
lites,4 and so considering the conversion rate to be
dependent only on the local temperature can lead to
erroneous results. In refs. 22 and 23, no data concern-
ing the overall kinetics of crystallization are presented
The changes in the temperature field with time do not
allow determination of the effect of the temperature
gradient at different local temperatures on the final
spherulitic structure.

In this article, the spherulitic crystallization of iPP
film is modeled in a uniaxial linear temperature field.
The evolution of shapes of individual spherulites and
the entire spherulitic pattern in a constant temperature
gradient was computer-simulated. The conversion of
the melt into spherulites in the temperature gradient
was also computed. The probabilistic model is de-
scribed and allows us to predict the conversion of the
melt into spherulites during gradient crystallization in
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two and three dimensions. In the analytical model, the
radial growth of lamellae is assumed. For the deter-
mination of the error introduced by this assumption,
the computer simulation of spherulite growth was
conducted for two cases: radial growth and growth
normal to the crystallization front. The effects of the
local temperature, the temperature gradient, and the
nucleation density on the kinetics of crystallization are
demonstrated. Both the computer simulation and the
analytical model are verified by a comparison of the
results with the experimental data of Pawlak and Pi-
orkowska.4

COMPUTER SIMULATION

The two-dimensional crystallization of iPP in a uniax-
ial linear temperature field was computer-simulated.
The evolution of single iPP spherulites and inter-
spherulitic boundaries between neighboring spheru-
lites, as well as the resulting spherulitic patterns con-
sisting of spherulites growing from randomly distrib-
uted nuclei, were simulated.

The well-known dependence of the iPP spherulite
growth rate, g, on the crystallization temperature, T,24

was applied:

g�T� � G0exp��U�R�T 
 T��	�1
exp��Kg�T�Tm
0 
 T�	�1


(2)

where U � 1500 cal mol�1, T� � 231.2 K, and Tm
o �

458.2 K, whereas G0 and Kg depend on the regime of
crystallization for a given iPP. The values of Kg and G0
were used as determined experimentally25,26 for Poly-
sciences iPP, with a weight-average molecular weight
(Mw) of 220,000: 1.47 � 105 K2 and 0.3359 cm s�1 in
regime II (T � 136°C) and 3.30 � 105 K2 and 3249 cm
s�1 in regime III (T � 136°C) The depression of g due
to fractionation26 or due to negative pressure buildup
in occluded pockets of melt26,27 was not taken into
account. g(T) was recalculated for the growth-rate de-
pendence on the x coordinate, G(x), with the relation
describing the linear temperature distribution: T � T0
� 
x.

Points at spherulite circumferences were displaced
in subsequent time intervals by the distance equal to
the product of the time interval and the growth rate as
determined by the local temperature according to eq.
(2). Two models of spherulite growth were consid-
ered: (1) radial growth and (2) variable growth direc-
tions always normal to the growth front. The growth-
front points entering the area already occupied by
other spherulites were rejected. In the probabilistic
model of spherulitic nucleation and growth, the first
growth front passing through a sampling point was
always considered real, independently of what hap-

pened earlier, and so in the computer simulation of
radial propagation, the growth along trajectories
emerging from other spherulites was reactivated. For
the model of the variable growth direction, the growth
along the trajectory entering the region occupied ear-
lier by other spherulite stopped.

The spherulitic samples were rectangles in which
the positions of spherulite nuclei were randomly chosen
by means of a subtract-with-borrow pseudorandom
number generator, Zn � Zn�10 � Zn�24 � c mod (224),
described in ref. 28. All spherulites started to grow
simultaneously from nuclei at the beginning of crys-
tallization. The crystallization processes were simu-
lated (1) with a constant nucleation density and (2)
with the nucleation density dependent on tempera-
ture. In general, the nucleation is related to the crys-
tallization temperature, but treating it as a constant
across the sample permitted the influence of the vari-
able G to be demonstrated on the process of formation
and the final form of the spherulitic pattern. For tem-
perature-dependent nucleation density, the pseudo-
random number generation method of von Neu-
mann29 was applied. Two types of temperature rela-
tionships of nucleation density were considered: (1)
proportional to G and (2) determined experimentally
for Polyscience iPP (Mw � 220,000), where the number
of spherulite centers per cubic millimeter of the poly-
mer, at the crystallization temperature T (°C), was
approximated by the following formula:4

I � exp�111.265 
 0.2544�T 
 273.15�	 (3)

The conversion degree was calculated at selected iso-
therms passing through samples containing at least
200 spherulites, and 2000 points equally spaced along
the isotherm were chosen in each sample. In subse-
quent time intervals, the fraction of the total number
of these points occupied already by growing spheru-
lites was computed. Care was taken to ensure the
proper distances from selected isotherms to the sam-
ple boundaries to exclude the influence of the finite
sizes of samples on obtained results. Several samples
were simulated for each crystallization process until
no significant influence of an additional data set on
averaged results was observed. The spherulitic crys-
tallization in different temperature gradients, 
, and
also in the uniform temperature field was simulated.
In the last case, the variable-growth-direction model
and the radial-growth model led to the exactly the
same results.

PROBABILISTIC MODEL

The probabilistic approach elaborated and described
previously in refs. 16–18 is applied here to describe
spherulitic crystallization in the temperature gradient.
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It is assumed that the temperature increases linearly in
the x direction, and so the isotherms are parallel to the
y axis, and that the spherulites are nucleated instan-
taneously at the beginning of the crystallization pro-
cess. The considerations that follow are based on the
assumption that spherulite nucleation can be de-
scribed as a set of random attempts occurring on a
plane and creating radially expanding circles. For sim-
plification of the problem, the radial spherulite growth
is assumed. The local nucleation density, D, denotes
the average number of nucleation attempts per unit
area. At any sample point, only the first arriving circle
is considered because it represents a real growing
spherulite. In general, the nucleation density and the
spherulite growth rate depend on the temperature,
but in a known unidirectional temperature field, they
can be treated as dependent on a spatial coordinate: D
� D(x) and G � G(x). Isothermal crystallization is then
a particular process with G a constant.

An arbitrarily chosen point, A(x0,0), on a plane (Fig.
1) will remain unoccluded by spherulites until time t
elapsed from the beginning of crystallization if no
spherulite is nucleated within the certain area, S(t),
with the following properties. The zone S(t) is defined
by the anisotropic growth of virtual spherulites nucle-
ated on its circumference that would arrive at point A
at time t; that is, those spherulites would have the
radius R(�,t) measured in the direction toward point
A. As it follows from the derivations described in refs.
16–19, the probability that no nucleation event occurs
in the area, S, equals exp(�E), where E is the integral
of D over S(t):

E�x0, t� � �
S

D ds (4a)

The conversion degree of the melt into spherulites, �,
is given by the following equation:

��x0, t� � 1 
 exp��E�x0, t�	 (4b)

During time t, the spherulite radius increases from 0 to
R(�,t). One can, therefore, calculate time t as the sum
of time intervals dt needed to pass the distances dr: dt
� G�1dr. Because G depends on the x coordinate only
and dr � dx cos �, time t can be expressed as the
following integral:

t � �cos ���1�
x0

x

G�x���1 dx� (5)

where x � x0 � R(�,t)cos �. Equation (4a) can, there-
fore, be written in the following form:

E�x0, t� � 2 �
x0�R��,t�

x0�R�0,t�

D�x��x 
 x0�tan � dx (6)

where R(0,t) and R(�,t) are expressed by eq. (5) for �
� 0 and � � �. After substitution of tan � with [(cos �)�2

� 1]0.5, where cos � is calculated from eq. (5), eq. (6)
assumes the following form:

E�x0, t� � 2�
x0�R��,t�

x0�R�0,t�

D�x��x 
 x0�

� � t2��
x0

x

G�x���1 dx���2


 1� 0.5

dx (7a)

For the three-dimensional crystallization, E can be
derived in a similar way:

E�x0, t� � � �
x0�R��,t�

x0�R�0,t�

D�x��x 
 x0�
2

� � t2��
x0

x

G�x���1 dx���2


 1� dx (7b)

For the introduction of the time dependence of the
primary nucleation rate, F(x,t�), the area S (t�,t) is
defined for each value of the nucleation time t�. Equa-
tion (5) has to be modified in the following way:

t 
 t� � �cos ���1 �
x0

x

G�x���1 dx� (8)

where x � x0 � R(�,t�,t)cos � and R(�,t�,t) is equal to
the radius toward point A at time t of a spherulite
nucleated at the circumference of S(t�,t), at angle �,

Figure 1 Point A on the plane.
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and at time t�. E is calculated by the integration of
F(x,t�) over S(t�,t) followed by the integration of the
result over 0 � t� � t. Therefore, for the two- and
three-dimensional processes, E(x0,t) is expressed by
the following formulas:

E�x0, t� � 2 �
0

t �
x0�R��,t�,t�

x0�R�0,t�,t�

F�x, t���x 
 x0�

� � �t 
 t��2��
x0

x

G�x���1 dx���2


 1� 0.5

dx dt� (9a)

E�x0, t� � � �
0

t �
x0�R��,t�,t�

x0�R�0,t�,t�

F�x, t���x 
 x0�
2

� � �t 
 t��2��
x0

x

G�x���1 dx���2


 1� dx dt� (9b)

where R(0,t�,t) and R(�,t�,t) are described by eq. (8).
For constant G, D, and F, the expressions for E(t) are

obtained from eqs. (7) and (9): �D(Gt)2, (4/3)�D(Gt)3,
�Ft(Gt)2/3, and �Ft(Gt)3/3 (known from the Avrami
and Evans theory).

Figure 2 Spherulite shapes predicted by the variable-growth-direction model for (A,C) 
 � 50 K mm�1 and (B,D) 
 � 100
K mm�1: (A) nucleated at 120°C, (B) nucleated at 120°C, (C) nucleated at 130°C, and (D) nucleated at 130°C. The positions
of spherulite growth fronts are plotted in 1-min intervals. Lines emanating from the centers indicate the growth directions.

MODELING OF POLYMER CRYSTALLIZATION 1355



RESULTS OF MODELING

The computer-simulated spherulites and spherulitic
patterns are shown in Figures 2–6. In all cases, the
temperature gradient is parallel to the x axis, and the
temperature, T, increases from the left to the right.
Figure 2 shows examples of spherulites for the tem-
perature gradient, 
, equal to 50 K and 100 K mm�1

with centers located at 120 and 130°C. The tempera-
ture gradient results in the spherulite shape anisot-
ropy, which increases with time. Lamella growth di-
rections, normal to the growth front, turn toward the
hotter side. Therefore, the hotter part of the spherulite
flattens and becomes composed of nearly parallel la-
mellae. This tendency is enhanced by the increase in 

and T. The radial-growth model leads also to the

anisotropy of spherulite shapes, as shown in Figure 3,
although the spherulites are flatter in polar regions.
This deviation increases with the time of growth and
is more pronounced at higher T and higher 
.

The shapes of interspherulitic boundaries depend
on the temperature, temperature gradient, positions of
spherulite centers, and distances between them. Only
spherulites with centers at the same isotherm develop
a straight line boundary equally distant from both
spherulite centers. In Figure 4(a,b), the interspherulitic
boundaries are shown as predicted by the variable-
growth-direction model. The boundary between
spherulites nucleated on the line parallel to the tem-
perature gradient is curvilinear and symmetrical with
respect to this line. In other cases, the symmetry is not
preserved. The boundaries bend toward higher T, as-

Figure 4 Shapes of interspherulitic boundaries predicted
by the variable-growth-direction model for 
 � 50 K mm�1:
(A,B) various positions of spherulite centers.

Figure 3 Spherulite shapes predicted by the radial-growth
model for 
 � 100 K mm�1: (A) nucleated at 120°C and (B)
nucleated at 130°C. The positions of spherulite growth fronts
are plotted in 1-min intervals.
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suming finally the direction parallel to the tempera-
ture gradient. The spherulites nucleated on the colder
side tend to occlude the neighbors nucleated on the
hotter side. The curvature of the boundary increases
also with the distance between spherulite centers. The
boundary is always closer to the center of the spheru-
lite nucleated at higher T. These tendencies are en-
hanced in the higher T and 
.

The influence of the temperature gradient on the
evolution of the spherulitic pattern is demonstrated in
Figures 5 and 6. The directions of the growth of
spherulites and the positions of the spherulite growth
fronts in subsequent time intervals are also marked in
these figures. In Figure 5, the structures composed of
spherulites propagating from identically localized nu-

clei are shown: the Voronoi diagram obtained for iso-
thermal conditions, the pattern predicted by the vari-
able-growth-direction model, and, for comparison, the
pattern obtained on the basis of the radial-growth
model. The temperature gradient alters the spherulitic
pattern even if temperature-independent nucleation
density is assumed. The effect increases with increases
in both 
 and T. Although the spherulites grow faster
toward the sample colder side, they soon impinge on
others. They can still grow toward the hotter side; this
results in their elongated shapes and in the formation
of a joint growth front. The lamellae within this front
tend to assume the direction parallel to the tempera-
ture gradient. The front flattens with time and oc-
cludes spherulites nucleated ahead of it; this is espe-

Figure 5 Computer-simulated development of spherulitic patterns with D � 100 mm�2: (A) isothermal conditions; (B) 

� 50 K mm�1, variable-growth-direction model; (C) 
 � 100 K mm�1, variable-growth-direction model; and (D) 
 � 100 K
mm�1, radial-growth model. In parts A and B, growth-front positions are plotted in 2-min intervals; in parts C and D,
growth-front positions are plotted in 2-min intervals for the first 12 min and later in 12-min intervals.
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cially well seen for 
 � 100 K mm�1. The pattern
generated with the radial-growth model (not shown
here) for 
 � 50 K mm�1 is nearly identical to the
pattern evolved with the variable directions of
growth. The differences between patterns generated
by the different models can be clearly seen for 
 � 100
K mm�1, especially in the parts of samples containing
elongated spherulites. Although the variable-growth-
direction model predicts the boundaries parallel to the
temperature gradient, the radial-growth model leads
to further bending of such boundaries. The analysis of
sets of pictures similar to those shown in Figure 4
indicate that the deviations between the shapes of
boundaries calculated on the basis of different models

may appear also for lower 
, such as 50 K mm�1;
however, this would have required a longer time than
the time needed for the accomplishment of crystalli-
zation in the sample. Nevertheless, both models pre-
dict similar shapes and positions of flat growth fronts
formed by many spherulites on the hotter side of the
sample.

In Figure 6(a,b), the patterns with temperature-de-
pendent D, proportional to G (a type of isokinetic
case), generated on the basis of the variable-growth-
direction model are demonstrated. D in the central
part of simulated samples, near the 120°C isotherm, is
the same as in samples shown in Figure 5(a–c). In
addition to the morphology changes seen in Figure 5,
the enlargement of spherulite sizes with the local tem-
perature increase is observed in Figure 6. At low T,
however, the interspherulitic boundaries are affected
only a little by the temperature gradient; the effect is
weaker than that visible in Figure 5(b,c) because of the
shorter distances between the spherulite centers. The
spherulites nucleated in the colder part of a sample
extend toward the hotter side, where the nucleation is
weak, which is especially visible for 
 � 100 K mm�1.
The conversion of the melt into spherulites occurs via
an advancement of the growth front formed by the
spherulites nucleated in the colder part of the sample.

The conversion degree/time dependencies calcu-
lated according to eq. (7a) for the isotherms at 120 and
125°C are plotted in Figure 7(a,b) for a range of 

values for two constant D values, 100 and 1000 mm�2,
and also for D � B � G. In the latter case, the following
values of B were chosen: 1.33 � 105, 1.33 � 106, 2.86
� 105, and 2.86 � 106 s mm�3. The first two values of
B result in D � 100 mm�2 and D � 1000 mm�2 at
120°C, whereas the last two give D � 100 mm�2 and D
� 1000 mm�2 at 125°C, respectively. The conversion
degree/time dependencies for isothermal crystalliza-
tion are also drawn for comparison. The data points
delivered by the computer simulations based on the
variable-growth-direction model and the radial-
growth model, marked in these plots, follow the
curves calculated according to eq. (7a). This indicates
that although the assumption of radial growth of
spherulites may lead to an erroneous prediction of the
spherulitic pattern, especially for large temperature
gradients, it still allows us to calculate the correct
conversion degree of the melt into spherulites even for

 as high as 200 K mm�1.

The temperature gradient speeds up the conversion
of the melt into spherulites. This depends, however,
on the local temperature, the value of the gradient,
and the nucleation density. For D � 100 mm�2 (aver-
age spherulite radius � 56 �m) the conversion of the
melt into spherulites becomes markedly faster for 

� 50 K mm�1, whereas for D � 1000 mm�2 (average
spherulite radius � 18 �m), 
 � 200 K mm�1 is

Figure 6 Computer-simulated samples with a nucleation
density proportional to the growth rate (D � G � 1.33 � 105

s mm�3): (A) 
 � 50 K mm�1 and (B) 
 � 100 K mm�1; the
variable-growth-direction model, growth-front positions are
plotted in 2-min intervals.
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needed for a marked acceleration of the conversion.
Therefore, it can be concluded that a temperature dif-
ference of several degrees per a distance equal to an
average spherulite diameter is necessary to influence
the conversion rate. The temperature dependence of
the nucleation density leads to further enhancement of

the conversion, which indicates the importance of the
nucleation in the colder part of the sample during the
crystallization in the temperature gradient. The eleva-
tion of the nucleation density weakens the effect.

In Figure 8(a), a computer-simulated iPP film 11 �m
thick crystallizing in a gradient of 35 K mm�1 is dem-

Figure 7 Conversion degree against time during gradient crystallization at isotherms of 120 and 125°C and during
isothermal crystallization at 120 and 125°C (thick, solid lines), as predicted by the probabilistic model. (A) The solid lines
indicate a constant nucleation density (D � 100 mm�2), and the dashed lines indicate a nucleation density proportional to the
growth rate (D � B � G, where B values give D � 100 mm�2 at 120 and 125°C). (B) The solid lines indicate D � 1000 mm�2,
and the dashed lines indicate D � B � G (where B values give D � 1000 mm�2 at 120 and 125°C). Symbols denote the results
of computer simulations based on the radial-growth model (filled) and the variable-growth-direction model (open).

MODELING OF POLYMER CRYSTALLIZATION 1359



onstrated. The simulation was based on the variable-
growth-direction model, whereas the temperature-de-
pendent nucleation density was calculated according
to eq. (3). In Figure 8(b), the micrograph of an iPP film
(Polysciences; Mw � 220,000) crystallizing in the gra-
dient of 35 K mm�1 is shown for comparison. The
experimental details of gradient crystallization are de-
scribed in ref. 4. The same morphological features are
visible in both pictures, indicating the correctness of
the computer simulation. In Figure 9, the time depen-
dencies of the conversion rate at isotherms at 128, 132,
and 134°C for 
 � 37 K mm�1 and at 134.5°C for 

� 35 K mm�1 are plotted as predicted by the proba-
bilistic model for iPP films 11 �m thick. The conver-
sion degree during the isothermal crystallization at
respective temperatures is also plotted for compari-
son. The data points obtained from the computer sim-
ulation based on the variable-growth-direction model
follow the curves based on eq. (8a). Equation (3) was
applied for the calculation of the nucleation density
used in the modeling. The experimental data points

from ref. 4 agree well with the theoretical predictions
of the acceleration of the conversion of the melt into
spherulites.

CONCLUSIONS

The computer simulation of spherulite growth permit-
ted us to visualize the evolution of spherulitic patterns
during crystallization in the temperature gradient. It
showed the anisotropy of spherulite shapes, the cur-
vature of interspherulitic boundaries, the variations of
the directions of lamella growth, and the development
of joint growth front in later stages. It enabled us to
predict the changes in the spherulitic structure and in
the overall kinetics of the conversion of the melt into
spherulites. The changes in the spherulitic structures
predicted by computer simulation based on the vari-
able-growth-direction model agreed well with the ex-
perimental observations.

The computer simulation allowed us to estimate the
possible error introduced by the assumption of radial

Figure 8 Spherulitic patterns in iPP films during crystallization in the temperature gradient of 35 K mm�1. (A) A
computer-simulated, 11-�m-thick iPP film is shown. All parameters were used as measured for iPP (Polysciences; Mw
� 220,000); the nucleation density was calculated according to eq. (3). Positions of the crystallizing front were plotted in 4-min
intervals during the first 12 min and later in 12-min intervals. (B) A polarizing micrograph of iPP crystallizing film
(Polysciences; Mw � 220,000) is shown.
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growth—the basis of the existing theories of overall
crystallization. In simulation of crystallization in the
temperature gradient of 100 K mm�1, it did not sig-
nificantly affect the outlines of the spherulitic growth
front or, therefore, the conversion degree. The proba-
bilistic model was also described and allowed the
prediction of the conversion degree of the melt into
spherulites in the steady unidirectional temperature
gradient. The computer simulation confirmed the use-

fulness of the probabilistic model despite the assump-
tion of radial spherulite growth made during deriva-
tion of the analytical formula. Both the computer sim-
ulation and the probabilistic model allowed the
prediction of the conversion of the melt into spheru-
lites during the gradient crystallization. The predic-
tion of the probabilistic model, supported by the re-
sults of the computer simulation, showed the acceler-
ation of the conversion of the melt into spherulites in

Figure 9 Comparison of the prediction of the probabilistic model (lines) and the results of computer simulation based on the
variable-growth-direction model (open symbols) with the experimentally measured time dependence of the conversion
degree (filled symbols) for iPP films during isothermal and gradient crystallization (experimental data from ref. 4).
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the temperature gradient. It could be explained with
the help of computer simulation as the result of the
contribution of spherulites advancing from the colder
part of a sample to the conversion rate. The alterations
in the spherulitic structure and overall kinetics of con-
version were enhanced by the higher temperature, the
higher temperature gradient, and the weaker nucle-
ation of spherulites. The temperature increment
caused a larger relative change in the iPP spherulite
growth rate at the higher temperature. This implied
more anisotropic growth of spherulites at elevated
temperatures and more pronounced changes in la-
mella growth directions and in the shapes of inter-
spherulitic boundaries. The weaker nucleation of
spherulites increased distances between spherulite
centers, allowing for longer crystallization and, there-
fore, the enhancement of spherulite shape anisotropy.
It allowed also for a more significant contribution of
spherulites from the colder part of a sample to the
conversion rate, which accelerated the polymer solid-
ification.
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